Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Joanne H. Smith,^a* Sandra E. Dann,^a Mark R. J. Elsegood,^a Sophie H. Dale^a‡ and Christopher G. Blatchford^b

^aChemistry Department, Loughborough University, Loughborough, Leicestershire LE11 3TU, England, and ^b3M Health Care Ltd, Drug Delivery Systems Division, Ashby Road, Loughborough, Leicestershire LE11 3GR, England

‡ Current address: School of Natural Sciences (Chemistry), University of Newcastle Upon Tyne, Newcastle Upon Tyne NE1 7RU, England

Correspondence e-mail: s.e.dann@lboro.ac.uk

Key indicators

Single-crystal X-ray study T = 150 K Mean σ (C–C) = 0.003 Å R factor = 0.033 wR factor = 0.079 Data-to-parameter ratio = 8.1

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

© 2005 International Union of Crystallography Printed in Great Britain – all rights reserved

a-Lactose monohydrate: a redetermination at 150 K

The structure of the monohydrate of α -4-(β -D-galactopyranosido)-D-glucopyranose, more commonly known as α -lactose monohydrate, C₁₂H₂₂O₁₁·H₂O, has been previously studied by single-crystal diffraction at *ca* 296 K [Beevers & Hansen (1971). *Acta Cryst.* B**27**, 1323–1325; Fries *et al.* (1971). *Acta Cryst.* B**27**, 994–1005; Noordik *et al.* (1984). *Z. Kristallogr.* **168**, 59–65]. This redetermination at low temperature [150 (2) K] shows improved precision of geometry. Graph-set analysis of the hydrogen-bonding motifs is presented for the first time.

Received 29 June 2005 Accepted 5 July 2005 Online 13 July 2005

Comment

 α -Lactose monohydrate, (I), is the most common form of lactose and may be used as the parent material for at least four different (pseudo)polymorphs of this disaccharide (Garnier *et al.*, 2002; Figura & Epple, 1995). This reducing sugar is built from a moiety of β -D-galactose and a moiety of α -D-glucose, joined by a 1,4 glycosidic bond between C1' of the galactose and C4 of the glucose unit (Fig. 1).

A search of the Cambridge Structural Database (Allen, 2002; Fletcher *et al.*, 1996; Version 5.26, November 2004 update) highlighted previous research on this hydrate with data collections performed at *ca* 296 K (Beevers & Hansen, 1971; Fries *et al.*, 1971; Noordik *et al.*, 1984). The redetermination of (I) presented here, obtained from low temperature [150 (2) K] single-crystal diffraction data, has resulted in improved precision compared to the previously determined room-temperature structures. Standard uncertainties on C–O and C–C bond lengths are improved to *ca* 0.003 compared to *ca* 0.004 at room temperature, with an improvement to *ca* 0.0017 compared to *ca* 0.002 for standard uncertainties on C–O–C angles. The unit cell volume measured at 150 K [768.85 (14) Å³] is *ca* 0.88% smaller than that determined at room temperature [775.7 (5) Å³; Noordik

Figure 1

View of (I), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level. Only hydroxyl H atoms involved in hydrogen bonding are labelled. Dashed lines indicate hydrogen bonds. One intramolecular hydrogen bond is present, viz. O9–H9A···O5.

Figure 2

Packing diagram of (I) showing graph-set notation for hydrogen bonding within the crystal structure when viewed along the crystallographic *a* axis. It can be observed that each system of (I), results in motifs: (A) S(7); (B) $R_3^3(16)$; (C) $R_3^3(14)$; (D) $R_3^3(9)$; (E) $R_4^4(18)$; (F) $R_4^3(16)$; (G) $R_3^3(19)$; (H) $R_4^3(18)$; (J) $R_4^3(15)$; (K) $R_5^4(21)$ approximately in the *bc* plane.

et al., 1984], this latter unit-cell volume itself being smaller than that derived from previous measurements.

The unit cell has previously been reported as 7.937 (2) Å, 21.568 (7) Å, 4.815 (1) Å and $\beta = 109.77$ (2)° (Noordik *et al.*, 1984); the unit cell reported here is related to the Noordik unit cell by a simple transformation and is currently regarded as the conventional unit cell, having the shortest possible vectors in the *ac* plane (International Tables for X-ray Crystallography, 1969, Vol. 1).

An examination of the final difference Fourier map reveals a peak of 0.27 e Å⁻³ at a distance of 1.48 Å from C1, close to the equatorial atom H1. Since the α and β anomers establish a 40:60 equilibrium in solution over time, the question arises whether there is a small component of β -lactose present, even though only the α -anomer spontaneously crystallizes below 366.5 K (Walstra & Jenness, 1984). In this present determination, the largest ten difference map features lie in the range 0.22–0.32 e Å⁻³, so this dubious peak is, in fact, indistinguishable from the noise. This means that, if present at all,

Figure 3

View of (I) along the crystallographic *b* axis, showing the remaining hydrogen bonding motifs formed between layers of (I) and water molecules; containing $O2-H2A\cdots O6^{i}$, $O3-H3A\cdots O12$, $O6-H6\cdots O2^{iii}$, $O8-H8A\cdots O11^{iii}$, $O9-H9A\cdots O5$, $O11-H11A\cdots O9^{i}$ and $O12-H12B\cdots O3^{v}$ hydrogen bonds [symmetry codes: (i) x - 1, y, z - 1; (iii) x, y, 1 + z; (v) 1 + x, y, z].

the percentage of the β -anomer must be in the low single figures and any significant β component can definitely be ruled out.

Graph-set analysis of the hydrogen-bonding patterns (Bernstein *et al.*, 1995; Etter *et al.*, 1990) within the structure shows the complicated nature of the linking together of the lactose and water molecules. There are 15 different ring motifs involving one molecule of hydrated α -lactose (Figs. 2 and 3). The motifs use either two or three molecules of (I), hydrogen bonding with zero, one or two water molecules. Fig. 4 shows a stacking formation of the lactose molecules when viewed, as a packing plot, along the crystallographic *c* axis. The molecules are held rigidly by a chain, $C_2^2(4)$, of hydrogen bonds between O6–H6 $A \cdots$ O2ⁱⁱⁱ and O2–H2 $A \cdots$ O6ⁱ [symmetry codes: (i) x - 1, y, z - 1; (iii) x, y, 1 + z] propagating along the crystallographic *a* axis and are also linked through hydrogen bonding to water molecules.

As well as those motifs present along the crystallographic *a* axis (Fig. 2), higher order motifs $R_6^6(21)$, $R_4^4(20)$, $R_5^5(20)$, $R_6^6(23)$ and $R_4^4(18)$ can be found between layers of (I) and interconnecting water molecules (Figs. 3 and 4).

Experimental

Colourless X-ray quality crystals of (I) were produced using powdered D-(+)- α -lactose monohydrate (supplied by Fluka Biochemica, Stenheim). A 10% aqueous solution of (I) was prepared as in methods previously studied by Larhrib *et al.* (2003). This solution was then diluted through addition of acetone, resulting in a 35:65 mixture of 10% lactose solution–acetone. Crystallization occurred upon standing at room temperature over a period of 48 h. A second crystalline sample of (I) was produced by a similar method except that acetone was substituted with a 10% potassium methoxide aqueous solution. Diffraction data from this sample were recorded by the EPSRC National Crystallographic Service, affording very similar unit-cell dimensions.

Crystal data

 $C_{12}H_{22}O_{11} \cdot H_2O$ $M_r = 360.31$ Monoclinic, $P2_1$ a = 4.7830 (5) Å b = 21.540 (2) Å c = 7.7599 (8) Å $\beta = 105.911$ (2)° V = 768.85 (14) Å³ Z = 2

Data collection

Bruker SMART 1000 CCD diffractometer Narrow-frame ω scans Absorption correction: multi-scan (SADABS; Sheldrick, 2003) T_{min} = 0.878, T_{max} = 0.971 6697 measured reflections

Refinement

Refinement on F^2
$R[F^2 > 2\sigma(F^2)] = 0.033$
$wR(F^2) = 0.079$
S = 1.10
1864 reflections
231 parameters
H atoms treated by a mixture of
independent and constrained
refinement

Table 1

Selected geometric parameters (Å, °).

O1-C1′	1.398 (3)	C1-O7	1.399 (3)
O1-C4	1.437 (3)		
C1′-O1-C4	116.88 (17)		

 $D_x = 1.556 \text{ Mg m}^{-3}$

Cell parameters from 3523

Mo $K\alpha$ radiation

reflections

 $\theta = 2.7 - 28.2^{\circ}$ $\mu = 0.14 \text{ mm}^{-1}$

T = 150 (2) K

 $R_{\rm int} = 0.022$

 $\theta_{\rm max} = 28.9^{\circ}$

 $h = -6 \rightarrow 6$

 $l = -9 \rightarrow 9$

 $k = -27 \rightarrow 27$

 $(\Delta/\sigma)_{\rm max} < 0.001$

 $\Delta \rho_{\rm max} = 0.32 \text{ e} \text{ Å}^{-3}$

 $\Delta \rho_{\rm min} = -0.17 \text{ e} \text{ Å}^{-3}$

Block, colourless

 $0.53 \times 0.27 \times 0.21 \ \text{mm}$

1864 independent reflections 1692 reflections with $I > 2\sigma(I)$

 $w = 1/[\sigma^{2}(F_{o}^{2}) + (0.0394P)^{2} + 0.1957P]$ where $P = (F_{o}^{2} + 2F_{c}^{2})/3$

Table	2
-------	---

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdots A$	$D \cdots A$	$D - H \cdots A$
$O2-H2A\cdots O6^{i}$	0.84	1.85	2.665 (2)	163
O3−H3A···O12	0.84	1.89	2.722 (3)	168
$O4-H4A\cdots O8^{ii}$	0.84	1.97	2.806 (3)	173
O6−H6···O2 ⁱⁱⁱ	0.84	1.90	2.707 (2)	161
$O7-H7A\cdots O12^{iv}$	0.84	1.97	2.772 (2)	161
$O8-H8A\cdots O11^{iii}$	0.84	1.91	2.700 (3)	157
O9−H9A…O5	0.84	2.02	2.819 (2)	159
$O11 - H11A \cdots O9^{i}$	0.84	1.92	2.755 (2)	174
$O12-H12B\cdots O3^{v}$	0.85(1)	1.89 (2)	2.740 (3)	174 (4)
$O12-H12A\cdots O8^{vi}$	0.84 (1)	2.23 (2)	2.920 (2)	140 (3)

Symmetry codes: (i) x - 1, y, z - 1; (ii) $-x, y + \frac{1}{2}, -z + 2$; (iii) x, y, z + 1; (iv) $-x, y - \frac{1}{2}, -z + 1$; (v) x + 1, y, z; (vi) $-x + 1, y + \frac{1}{2}, -z + 2$.

Non-water H atoms were placed in geometric positions using a riding model [C–H = 0.99 (methylene H) and 1.00 Å (methine H); O-H = 0.84 Å], and $U_{iso}(H) = 1.2U_{eq}(C)$ and $1.5U_{eq}(O)$. The data set was truncated at $2\theta = 52^{\circ}$, as only statistically insignificant data were present above this limit. Water H atoms were located in a difference Fourier map and refined using restraints on the O–H bond length

Figure 4

Packing diagram of (I), viewed along the crystallographic c axis, showing the hydrogen bonding linking molecules of (I) and water, above and below a central molecule.

[target value 0.840 (15) Å] and the 1,3-distance [target value 1.43 (2) Å] and $U_{\rm iso}(\rm H) = 1.5 U_{eq}(\rm O)$. In the absence of significant anomalous dispersion effects, 1526 Friedel pairs were merged during the refinement of (I).

Data collection: *SMART* (Bruker, 2001); cell refinement: *SAINT* (Bruker, 2001); data reduction: *SAINT*; program(s) used to solve structure: *SHELXTL* (Sheldrick, 2000); program(s) used to refine structure: *SHELXTL*; molecular graphics: *SHELXTL*; software used to prepare material for publication: *SHELXTL* and local programs.

The authors acknowledge the use of the EPSRC's Chemical Database Service at Daresbury (Fletcher *et al.*, 1996) and the EPSRC National Crystallographic Service in Southampton. We also thank 3M Health Care, Loughborough, England, for funding.

References

- Allen, F. H. (2002). Acta Cryst. B58, 380-388.
- Beevers, C. A. & Hansen, H. N. (1971). Acta Cryst. B27, 1323-1325.
- Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.
- Bruker (2001). *SMART* (Version 5.611) and *SAINT* (Version 6.02a). Bruker AXS Inc., Madison, Wisconsin, USA.
- Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262. Figura, L. O. & Epple, M. (1995). J. Therm. Anal. 44, 45–53.
- Fletcher, D. A., McMeeking, R. F. & Parkin, D. (1996). J. Chem. Inf. Comput. Sci. 36, 746–749.
- Fries, D. C., Rao, S. T. & Sundaralingham, M. (1971). Acta Cryst. B27, 994– 1005.
- Garnier, S., Petit, S. & Coquerel, G. (2002). J. Therm. Anal. Calorim. 68, 489– 502.
- Larhrib, H., Martin, G. P., Prime, P. & Marriott, C. (2003). *Eur. J. Pharm. Sci.* **19**, 211–221.
- Noordik, J. H., Beurskens, P. T., Bennema, P., Visser, R. A. & Gould, R. O. (1984). Z. Kristallogr. 168, 59–65.
- Sheldrick, G. M. (2000). SHELXTL. Version 6.10. Bruker AXS Inc., Madison, Wisconsin, USA.
- Sheldrick, G. M. (2003). SADABS. Version 2.08. University of Göttingen, Germany.
- Walstra, P. & Jenness, R. (1984). Dairy Chemistry and Physics, Carbohydrates, ch. 3, pp. 27–41. New York: Wiley.